Students in fourth grade are encouraged to see the relationship between multiplication and division. Their task is to make sense of division and have a real understanding of the concept, thereby preparing for more complicated strategies in subsequent grades. One strategy that supports this is *multiplying up*.

This student has used the *multiplying up* strategy to find the solution to $624 \div 6$.

One strategy, *partial quotients*, began in grade 3 and continues in grade 4 with larger numbers.

Students are exposed to various strategies to ensure a good foundation in number sense.

A fourth grader has to understand the unit fraction and be able to apply this understanding to addition and subtraction of fractions.

 $\frac{5}{8} = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}$ OR $\frac{2}{8} + \frac{3}{8}$ etc...

Students need to see fractions on a number line and apply this knowledge to different situations.

	Т	he r	num	ber	line	mar	ked	off	in t	hirds	5	
0			1			2			3			4
03	$\frac{1}{3}$	2 3	33	$\frac{4}{3}$	<u>5</u> 3	<u>6</u> 3	$\frac{7}{3}$	<u>8</u> 3	<u>9</u> 3	$\frac{10}{3}$	$\frac{11}{3}$	$\frac{12}{3}$

A fourth grader should develop an understanding of a fraction as a number.

Understanding fraction equivalence is very important in grade 4. Students need to understand how an equivalent fraction is obtained. 2 = 8

$$\frac{1}{3}$$
 $\frac{1}{12}$

The whole is the square, measured by area. The left drawing is divided into 3 rectangles of equal area, and the shaded region is 2 of the 3 equal pieces. The right drawing is divided into 3 x 4 small rectangles of equal area, and the shaded area comprises 2 x 4 of these and so it represents $2 \times 4 = 8$. $3 \times 4 \times 12$

Grade 4 expectations when working with fractions are limited to fractions with denominators 2, 3, 4, 5, 6, 8, 10, 12, and 100.

Parent Math Strategy Guide

Grade 4

Multiplication & Division Working with Fractions

Math

By the time students reach 4th grade, they have mastered addition and subtraction strategies. Students now understand the standard algorithm for addition and subtraction and are able to apply it fluently to solve real-world problems.

Fourth graders come to this grade level knowing multiplication facts from memory. Students can use strategies to help them with these facts:

72

 $8 \times 10 = 80 \\ 80 - 8 = 72$ OR $8 \times 5 = 40 \\ 8 \times 4 = \frac{32}{32}$

A fourth grade student is familiar with building simple multiplication problems using base ten blocks. This drawing shows the problem **4 x 13**.

Students investigated working with the distributive property in grade 3.

(4 x 10) + (4 x 3) 40 + 12 = 52 A strategy that helps students multiply numbers mentally is *doubling and halving*.

Here the student halves one number and multiplies the other number by two to get a friendly number that is easy to work with mentally.

Students now begin to work with the *area model of multiplication* using 2-digit x 2-digit numbers.

Here a student has built a 12 x 23 area model that shows the product 276.

Once again, the distributive property (based on the model) helps students understand multiplication.

 $12 \times 23 = 276$ $(10 + 2) \times (20 + 3)$ $(10 \times 20) + (2 \times 20) + (10 \times 3) + (2 \times 3)$ 200 + 40 + 30 + 6 = 276

Once students have understood the models and can apply the distributive property to these multiplication problems, they move to *partial products*.

	40	9	
20	800	180	
6	240	54	4 9
U	240	<u>x 2 6</u>	
		800	
	Students dra	240	
	models and	180	
	calculate the	+ 54	
	product.	1274	

Fourth graders explore division by finding whole number quotients and remainders using strategies based on place value and the properties of operations. A strategy based on place value that is used to assist students with understanding division is *explicit trades*.

In this example, the student had to trade 2 tens for 20 ones. This should be clearly explained using place value language.